Optimal Sequential Energy Allocation for Inverse Problems
نویسندگان
چکیده
منابع مشابه
Optimal Adaptive Policies for Sequential Allocation Problems
p Ž . 0 Ž . Ž . Ž . V u under any policy p in C is equal to nm* u y M u log n q o log n , as n R Ž . Ž . Ž . n a `, where m* u is the largest population mean and M u is a constant. ii Policies in C are asymptotically optimal within a larger class C of ‘‘uniformly R UF 0 p Ž Ž . Ž .. fast convergent’’ policies in the sense that limna ` nm* u y V u r n Ž Ž . pŽ .. Ž . nm* u y V u F 1, for any p g...
متن کاملVISIM: Sequential simulation for linear inverse problems
Linear inverse Gaussian problems is traditionally solved using least squares based inversion. The center of the posterior Gaussian probability distribution is often chosen as the solution to such problems, while the solution is in fact the posterior Gaussian probability distribution itself. We present an algorithm, based on direct sequential simulation, which can be used to efficiently draw sam...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
a benchmarking approach to optimal asset allocation for insurers and pension funds
uncertainty in the financial market will be driven by underlying brownian motions, while the assets are assumed to be general stochastic processes adapted to the filtration of the brownian motions. the goal of this study is to calculate the accumulated wealth in order to optimize the expected terminal value using a suitable utility function. this thesis introduced the lim-wong’s benchmark fun...
15 صفحه اولDesigning Optimal Spectral Filters for Inverse Problems
Spectral filtering suppresses the amplification of errors when computing solutions to ill-posed inverse problems; however, selecting good regularization parameters is often expensive. In many applications, data are available from calibration experiments. In this paper, we describe how to use such data to precompute optimal spectral filters. We formulate the problem in an empirical Bayes risk mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Signal Processing
سال: 2007
ISSN: 1932-4553
DOI: 10.1109/jstsp.2007.897049